Chapter 2

EXPONENTS AND SCIENTIFIC NOTATION

Lesson 2.1 Day 1

INTEGER EXPONENTS

What Do I Need Today?

- ► My Interactive Notebook
- ▶ 1 Piece of Paper
- Exponents Chart
- Colors

Exponents show repeated multiplication

Exponents represent how many times a number (BASE) is multiplied by itself

5³ $5 \cdot 5 \cdot 5 =$ $25 \cdot 5 =$ 125

What do we do with a negative exponent?

What do we do with a negative exponent?

A negative exponent causes the number to be re-written as the reciprocal of the original number and the exponent to be positive

 5^{-3} 53

 $5^{-3} =$

 $\frac{1}{5^3} = \frac{1}{5 \cdot 5 \cdot 5} = \frac{1}{125}$

 1^{-2} 2 2^{2} 1

What is anything to the power of 0?

What is anything to the power of 0?

Any number raised to the power of 0 is equal to 1

5⁰ =

Chart

Practice using these rules and fill out the chart

General Rules

Practice

Work on "Guided Practice" Page 36 Numbers 1-9

Homework

Work on Homework 2.1 Worksheet Page 24 and Handout

Lesson 2.1 Day 2

INTEGER EXPONENTS

What Do I Need Today?

- My Interactive Notebook
- ▶ 1 Piece of Paper
- Scissors
- ► Tape/Glue
- Exponents Rules Flip Book
- Colors

Product Rule

When multiplying exponents with the same base, keep the base and add the powers

Product Rule

$3^3 \cdot 3^2 = 3^5$

Product Rule

Quotient Rule

When dividing exponents with the same base, keep the base and subtract the powers

Quotient Rule

Quotient Rule

Keep where the bigger power is! 4^{6} 1 43 4

Practice

Work on "Guided Practice" Page 36 Numbers 10-15

Power of a Power Rule

To raise a power to a power, multiply the exponents

Power of a Power Rule

Power of a Power Rule

Different level = multiply

Power of a Product

Each base is raised to a power

Power of a Product Rule

$(4 \cdot 5)^3$ $4^3 \cdot 5^3$

Practice

Work on "Guided Practice" Page 36 Numbers 16-19

Homework

Work on Homework 2.1 Worksheet Page 20 and 2.1 Independent Practice #s 21-27

Lesson 2.2 Scientific Notation with positive powers of 10
What Do I Need Today?

Scientific Notation Flip Book

What is Scientific Notation?

A way of expressing a very large or very small number as a product of a number greater than or equal to 1 or less than 10 and a power of 10

Move decimal to the left so your number is...

1 < number < 10

26,400,000 =

2.64×10^{7}

41,200 =

4.12×10^4

Move the decimal the number of times as exponent

$2.36 \times 10^5 =$

236,000

$7.034 \times 10^9 =$

7,034,000,000

Practice

Work on "Guided Practice" Page 42 Numbers 1-14

Homework

Work on Homework 2.2 Independent Practice #s 16-22 & 25-27 & 2.2 Worksheet Page 26

Lesson 2.3

SCIENTIFIC NOTATION WITH NEGATIVE POWERS OF 10

What Do I Need Today?

- My Interactive Notebook
- ▶ 1 Piece of Paper
- Scissors
- ► Tape/Glue
- Other Half of Scientific Notation Flip Book
- Colors

Move decimal to the right so your number is...

1 < number < 10

0.0783 =

7.83×10^{-2}

The exponent becomes negative when moving to the right!

0.0000152 =

1.52×10^{-6}

The exponent becomes negative when moving to the right!

Move the decimal the number of times as exponent

 2.33×10^{-6}

0.0000233

 7.032×10^{-3}

0.007032

Practice

Work on "Guided Practice" Page 48 Numbers 1-14

Homework

Work on Homework 2.3 Independent Practice #s 16-22 & 28-35 & 2.3 Worksheet Page 32

Lesson 2.4 Day 1

OPERATIONS WITH SCIENTIFIC NOTATION – ADDING AND SUBTRACTING

What Do I Need Today?

- ► My Interactive Notebook
- ▶ 1 Piece of Paper
- Scissors
- ► Tape/Glue
- Table Print Out
- Colors

How can we add and subtract scientific notation numbers?

Step 1: Write each number in standard form

Step 2: Add all the numbers

Step 3: Change back to scientific notation

Country	United States	Canada	Mexico
Population	3.1 × 10 ⁸	3.38×10^{7}	1.1 × 10 ⁸

310000000 33800000 +110000000 453800000

453800000. =

 4.538×10^{8}

Step 1: Re-write each number with the SAME power of 10

Step 2: Add the multipliers for each

▶ <u>Step 3:</u> Write the final answer in scientific

notation

Country	United States	Canada	Mexico
Population	3.1 × 10 ⁸	3.38 × 10 ⁷	1.1 × 10 ⁸

 3.1×10^{8} .338 × 10⁸ 1.1 × 10⁸ 3.100 .338 +1.100 4.538

4.538×10^{8}

Practice

Work on "Guided Practice" Page 54 Numbers 1-4

Homework

Work on Homework 2.4 Worksheet Handouts

Lesson 2.4 Day 2

OPERATIONS WITH SCIENTIFIC NOTATION -MULTIPLICATION AND DIVISION

What Do I Need Today?

- ► My Interactive Notebook
- ▶ 1 Piece of Paper
- Colors

How can we multiply and divide scientific notation numbers?

Dividing

▶ <u>Step 1:</u> Put numbers all into scientific notation

Step 2: Divide multipliers

► <u>Step 3:</u> Use exponent rules to divide exponents

▶ <u>Step 4:</u> Re-write in scientific notation

Dividing

$\frac{2.025 \times 10^{14}}{225,000,000} = \frac{2.025 \times 10^{14}}{2.25 \times 10^8}$

2.025×10^{14} 2.25×10^{8}

Divide 2.025 by 2.25 to equal 0.9

2.025×10^{14} 2.25×10^{8}

Divide 10^{14} by 10^8 to get 10^6

$\frac{2.025 \times 10^{14}}{2.25 \times 10^8}$

 $.9 \times 10^{6}$ cannot work because it has to be larger than 1

Dividing

$\frac{2.025 \times 10^{14}}{2.25 \times 10^8} = 9 \times 10^5$

▶ <u>Step 1:</u> Put all numbers into scientific notation

Step 2: Multiply multipliers

Step 3: Use exponent rules to multiply exponents

▶ <u>Step 4:</u> Re-write in scientific notation

Multiplying

$(20,000,000,000)(5.23 \times 10^{6}) =$ $(2 \times 10^{10})(5.23 \times 10^{6}) =$ $2 \cdot 5.23 = 10.46$ $10^{10} \cdot 10^{6} = 10^{16}$

10.46×10^{16}

Needs to be small than 10!

 1.046×10^{17}

Practice

Work on "Guided Practice" Page 54 Numbers 5-8

Homework

Work on Homework 2.4 Independent Practice #s 16-25 EVENS & 2.4 Worksheet Page 38