Chapter 1

Real Numbers

Lesson 1.1 Day 1

Rational and Irrational Numbers

What Do I Need For Class Today?

- My Interactive Notebook
- Tape/ Glue
- 23×5 Cards
- 4 Sticky Notes
- Colors

What is a Rational Number?

Rational Number

- Any number that can be expressed as a fraction, where a \& b are both integers and $b \neq 0$

Rational Number

- Any number that can be expressed as a fraction, where a \& b are both integers and $b \neq 0$ -Example: $\frac{2}{1}, \frac{1}{3}, \frac{0}{2}$

How can we express a rational number as a decimal?

Rational Number as Decimal

-To express a rational number as a decimal divide the NUMORATOR by the DENOMINATOR

Rational Number as Decimal

-To express a rational number as a decimal divide the NUMORATOR by the DENOMINATOR

- Example: $\frac{3}{4}=\frac{\text { numerator }}{\text { denominator }}$

Practice

Work on "Guided
 Practice" Numbers 1-6

The Decimal form of a Rational Number:

The Decimal form of a Rational Number:

-Repeating : One number of combination repeats

- Example $: \frac{5}{6}$

The Decimal form of a Rational Number:

-Terminating : The decimal ends

$$
\text { - Example : } \frac{1}{4}
$$

How can we express a rational number as a fraction?

How can we express a rational number as a fraction?

-Terminating Decimal:

- Step 1: Figure out what place value the LAST number is in
- Step 2: Write over that many zeros
- Step 3: Simplify

How can we express a rational number as a fraction?

- Terminating Decimal:
- Step 1: Figure out what place value the LAST number is in
- Step 2: Write over that many zeros
- Step 3: Simplify
- Example: 0.825
- Step 1: $0.82 \underline{5}$ Thousandths
- Step 2: $\frac{825}{1000}$
- Step 3: $\frac{825}{1000} \div 25=\frac{33}{\div 25}$
- *What we do to the top, we must do to the bottom*

How can we express a rational number as a fraction?

-Repeating Decimal:

- Step 1: Set $x=$ decimal
- Step 2: Multiply both sides by 100
- Step 3: Subtract from both sides
- Step 4: Solve for x by dividing

How can we express a rational number as a fraction?

- Repeating Decimal:
- Step 1: Set $x=$ decimal
- Step 2: Multiply both sides by 100
- Step 3: Subtract from both sides
- Step 4: Solve for x by dividing
- Example: $0 . \overline{37}$
- Step 1: $x=0 . \overline{37}$
- Step 2: $100 x=37 . \overline{37}$
- Step 3: $-x-\overline{37}$
- Step 4: $99 x=37$
$99 \quad 99$
- $x=\frac{37}{99}$

Practice

$$
\begin{gathered}
\text { Work on "Guided } \\
\text { Practice" Numbers } \\
7-12
\end{gathered}
$$

What is a Square Root?

Square Root

$2!!$

Positive or Negative Answer

Square Root

$$
x^{2}=\mathrm{p}
$$

$6^{2}=36$
$\sqrt{36}=6$ or -6

Perfect Square

-Square root is an integer

$$
\cdot \sqrt{49}=7
$$

What is a Cube Root?

Cube Root

$3!!$

$\sqrt[3]{ }$

Positive Answer

Cube Root

$$
\begin{aligned}
& x^{3}=p \\
& 2^{3}=8 \\
& \sqrt[3]{8}=2
\end{aligned}
$$

What is a Perfect Cube?

Perfect Cube

- Cube root is an integer

$$
\cdot \sqrt[3]{125}=5
$$

Practice

$$
\begin{gathered}
\text { Work on "Guided } \\
\text { Practice" Numbers } \\
13-15
\end{gathered}
$$

Homework

Work on Homework 1.1 Worksheets Pages 1

(\#s 1-20) \& 3 (\#s 1-12)

Lesson 1.1 Day 2

What Do I Need For Class Today?

- My Interactive Notebook
- Colors

What is an irrational number?

Irrational Number

oNot Rational

- Square roots that are not perfect squares $\cdot \sqrt{2}$ is irrational!

How can we estimate square roots?

Estimate Square Roots

-Estimate $\sqrt{3}$ -Find the perfect squares it's between

$$
\begin{gathered}
\cdot \sqrt{1}<\sqrt{3}<\sqrt{4} \\
\cdot 1<\sqrt{3}<2 \\
0 \approx 1.7
\end{gathered}
$$

Estimate Square Roots

- Estimate $\sqrt{45}$

Estimate Square Roots

\cdot Estimate $\sqrt{45}$
$\cdot \sqrt{36}<\sqrt{45}<\sqrt{49}$
$\cdot 6<\sqrt{45}<7$
$\bullet \approx 6.7$

Practice

Work on the skipped problems from last night homework

Practice

> Work on "Guided Practice" Numbers $16-18$

Homework

Work on Homework 1.1 Independent Practice \#s 20-34 EVENS

Lesson 1.2

Sets of Real Numbers

What Do I Need For Class Today?

My Interactive Notebook

- Tape/ Glue
- Scissors
- Real Number Systems Chart
- 1 Page 4 Flap Book
- Colors

What is the Real Number System?

Real Number System

- Irrational Numbers
- Numbers that are not rational
- Square roots of numbers that aren't perfect square
- Examples:
$\cdot \pi$
- $\sqrt{38}$
- $\sqrt{17}$
$\cdot \pi+3$

Real Number System

- Rational Numbers
- A number that can be written as a fraction
- Examples:
-. 16
- $\sqrt{25}$
- $\frac{17}{5}$
- $\sqrt{1}$
- $4 . \overline{7}$

Real Number System

- Integers
- Positive or negative whole numbers
- Examples:
- 1,783
- 31
- -27
- 17
- $\frac{-20}{5}$

Real Number System

- Whole Numbers
- Positive numbers
- Includes 0
- No fractions
- Examples:
-1,900
- 0
- 16
$\cdot 8,123$

Real Number System

- Natural Numbers
- Positive Whole numbers
- No fractions
- Examples:
- 2,200
- 193
- 10
- 1

Practice

$$
\begin{gathered}
\text { Work on "Guided } \\
\text { Practice" Numbers } \\
1-8
\end{gathered}
$$

Practice

> Work on "Guided Practice" Numbers $9-12$

Homework

Work on Homework 1.2

 Independent Practice \#s 14-22 \& Worksheet Page 7
Lesson 1.3

Ordering Real Numbers

What Do I Need For Class Today?

- My Interactive Notebook
- Tape/ Glue
- Scissors
- 1 Page 2 Flap Books
- Colors

How can we compare irrational numbers?

Comparing Irrational Numbers

-Estimate the irrational numbers!

$$
\cdot \sqrt{3}+5-3+\sqrt{5}
$$

Comparing Irrational Numbers

$$
\begin{array}{cc}
\cdot \sqrt{3}+5 & \bullet 1+5 \\
\cdot \sqrt{1} \sqrt{3} \sqrt{4} & \cdot \text { OR } \\
\cdot 1 \sqrt{3} 2 & \bullet 2+5
\end{array}
$$

-6 or 7

Comparing Irrational Numbers

$$
\begin{aligned}
& -3+\sqrt{5} \\
& \cdot \sqrt{4} \quad \sqrt{5} \quad \sqrt{9} \\
& \text {-2 } \sqrt{5} 3 \\
& \cdot 2+3 \\
& \cdot \text { OR } \\
& \cdot 3+3
\end{aligned}
$$

Comparing Irrational Numbers

-Estimate the irrational numbers!

$$
\cdot \sqrt{3}+5>3+\sqrt{5}
$$

Practice

> Work on "Guided Practice" Numbers 1-8 ODDS

How can we order real numbers?

Order Real Numbers

- Order $\sqrt{22}, \pi+1$, and $4 \frac{1}{2}$ from least to greatest

Order Real Numbers

$$
\sqrt{22}
$$

- $\sqrt{22}$ is between 4 and 5 . Since we don't know where it falls between 4 and 5, we need to find a better estimate so we can compare it to $4 \frac{1}{2}$
- Since 22 is closer to 25 than 16 we want to check numbers closer to 5
$4.5^{2}=20.25 \quad 4.6^{2}=21.16 \quad 4.7^{2}=22.09 \quad 4.8^{2}=23.04$
- So we can approximate the value to about 4.7

Order Real Numbers

$$
\pi+1
$$

- An approximation to pi is 3.14
- Add 1
- So $\pi+1 \approx 4.14$

Order Real Numbers

$$
4 \frac{1}{2}
$$

- We know that $\frac{1}{2}$ is equal to a decimal of .5 $.4+.5=4.5$

Order Real Numbers

- Order $\sqrt{22}, \pi+1$, and $4 \frac{1}{2}$ from least to greatest
$\cdot \sqrt{22} \approx 4.7$
$\cdot \pi+1 \approx 4.14$
$-4 \frac{1}{2} \approx 4.5$

Order Real Numbers

- Order $\sqrt{22}, \pi+1$, and $4 \frac{1}{2}$ from least to greatest
$\cdot \sqrt{22} \approx 4.7$
$\cdot \pi+1 \approx 4.14$
$-4 \frac{1}{2} \approx 4.5$

$$
\pi+1,4 \frac{1}{2}, \sqrt{22}
$$

Practice

> Work on "Guided Practice" Numbers 9 \& 10

Homework

Work on Homework 1.3

 Independent Practice \#s 12-15, 18-20, \& 24 \& Worksheet Page 13